首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2493篇
  免费   496篇
  国内免费   674篇
测绘学   433篇
大气科学   957篇
地球物理   506篇
地质学   691篇
海洋学   307篇
天文学   198篇
综合类   161篇
自然地理   410篇
  2024年   11篇
  2023年   21篇
  2022年   64篇
  2021年   87篇
  2020年   89篇
  2019年   97篇
  2018年   87篇
  2017年   97篇
  2016年   119篇
  2015年   128篇
  2014年   156篇
  2013年   175篇
  2012年   164篇
  2011年   169篇
  2010年   162篇
  2009年   153篇
  2008年   161篇
  2007年   165篇
  2006年   202篇
  2005年   167篇
  2004年   141篇
  2003年   124篇
  2002年   105篇
  2001年   97篇
  2000年   99篇
  1999年   82篇
  1998年   77篇
  1997年   54篇
  1996年   61篇
  1995年   56篇
  1994年   53篇
  1993年   45篇
  1992年   31篇
  1991年   27篇
  1990年   31篇
  1989年   21篇
  1988年   30篇
  1987年   7篇
  1986年   15篇
  1985年   12篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有3663条查询结果,搜索用时 187 毫秒
101.
周策  陈文俊 《探矿工程》2004,31(8):36-38
为解决以往定向仪不抗振、岩样采取率不高等问题,利用时间与钻孔空间位置对应的关系,研制成功了KD型定向仪。详细介绍了该定向仪的基本构成、技术参数及现场应用情况。  相似文献   
102.
103.
104.
Broadly speaking, there is, at least within geomorphic circles, a general acceptance that rocks with low albedos will warm both faster and to higher temperatures than rocks with high albedos, reflectivity influencing radiative warming. Upon this foundation are built notions of weathering in respect of the resulting thermal differences, both at the grain scale and at the scale of rock masses. Here, a series of paving bricks painted in 20 per cent reflectivity intervals from black through to white were used to monitor albedo‐influenced temperatures at a site in northern Canada in an attempt to test this premise. Temperatures were collected, for five months, for the rock surface and the base of the rock, the blocks being set within a mass of local sediment. Resulting thermal data did indeed show that the dark bricks were warmer than the white but only when their temperatures were equal to or cooler than the air temperature. As brick temperature exceeded that of the air, so the dark and light bricks moved to parity; indeed, the white bricks frequently became warmer than the dark. It is argued that this ‘negating’ of the albedo influence on heating is a result of the necessity of the bricks, both white and black, to convect heat away to the surrounding cooler air; the darker brick, being hotter, initially convects faster than the white as a product of the temperature difference between the two media. Thus, where the bricks become significantly hotter than the air, they lose energy to that air and so their respective temperatures become closer, the albedo influence being superceded by the requirement to equilibrate with the surrounding air. It is argued that this finding will have importance to our understanding of weathering in general and to our perceptions of weathering differences between different lithologies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
105.
Based on one type of practical Biot's equation and the dynamic-stiffness matrices of a poroelastic soil layer and half-space, Green's functions were derived for uniformly distributed loads acting on an inclined line in a poroelastic layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.  相似文献   
106.
Introduction China is a country with many landslides and debris flows. These disasters bring out a large amount of losses of life and property. It is significant to predict landslide incident by monitoring the deformations of these landslides. At past, triangulation and trilateration are traditional tools, but it is very difficult for them to realize real-time monitoring, and it is more dangerous for obser- vation workers when the deformation becomes larger. Because of many advantages such as…  相似文献   
107.
By utilizing observational data from a 325 m tower of the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS) on March 19-29, 2001 and August 11-25, 2003, a comprehensive study was conducted on the vertical dynamical and thermodynamic characteristics of the urban lower boundary layer (ULBL) and its relationship with aerosol concentration over Beijing. Firstly, a comparative analysis was made on the gradient data (wind, temperature and humidity), ultrasonic data (atmospheric turbulences) and air-quality observations at different tower heights (47, 120 and 280 m). Secondly, a diagnosis was made to reveal the major features of normalized variances of velocity and temperature, turbulence kinetic energy as well as their relationship with aerosol concentrations. Furthermore, the characteristics of the ULBL vertical structure and the TSP concentration/distribution variations during a sand/dust weather process were also analyzed. The outcome of the study showed that under unstable stratification, the normalized variances of velocity (σu/u*, σv/u*, σw/u*) and temperature (σT/T*) at 47 and 120 m heights fit the Monin-Obukhov similarity (MOS) framework and the fitting formulas were given out accordingly. According to the stratification parameter (z′/L), the stable ULBL could be divided into 2 zones. With z′/L<0.1, it was a weakly stable zone and MOS framework was applicable. The other was a highly stable zone with z′/L>0.1 and the normalized velocity variances tended to increase along with higher stability, but it remained constant for normalized temperature variances. At daytime, the near-surface layer includes two heights of 47 and 120 m, while 280 m has been above it. The ULBL analysis in conjunction with a sand/dust weather process in Beijing in March 2001 indicated that the maximum concentration of Total Suspended Particulates (TSP) at 320 m reached 913.3 μg/m3 and the particles were transported from the upper to lower ULBL, which was apparently related to the development process of a low-level jet and its concomitant strong sinking motion.  相似文献   
108.
The spatial/temporal variation information of atmospheric dynamic-chemical processes at observation site points of the "canopy" boundary of Beijing urban building ensemble and over urban area "surface", as well as the seasonal correlation structure of the gaseous and particulate states of urban atmospheric pollution (UAP) and its seasonal conversion feature at observation points are investigated, using the comprehensive observation data of the Beijing City Air Pollution Observation Experiment (BECAPEX) in winter and summer 2003 with a "point-surface" combined research approach. By using "one dimension spatial empirical orthogonal function (EOF)" principal component analysis (PCA) mode, the seasonal change of gaseous and particulate states of atmospheric aerosols and the association feature of pollutant species under the background of the complicated structure of urban boundary layer (UBL) are analyzed. The comprehensive analyses of the principal components of particle concentrations,gaseous pollutant species, and meteorological conditions reveal the seasonal changes of the complex constituent and structure features of the gaseous and particulate states of UAP to further trace the impact feature of urban aerosol pollution surface sources and the seasonal difference of the component structure of UAP. Research results suggest that in the temporal evolution of the gaseous and particulate states of winter/summer UAP, NOx, CO, and SO2 showed an "in-phase" evolution feature, however, O3 showed an "inverse-phase" relation with other species,all possessing distinctive dependent feature. On the whole, summer concentrations of gaseous pollutants CO, SO2, and NOx were obviously lower than winter ones, especially, the reduction in CO concentration was most distinctive, and ones in SO2 and NOx were next. However, the summer O3 concentration was more than twice winter one. Winter/summer differences in PM10and PM2.5 particle concentrations were relatively not obvious, which indicates that responses of PM10 and PM2.5 particle concentrations to the difference of winter/summer heating period emission sources are far less distinctive than those of NOx, SO2, and CO. The correlation feature of winter/summer gaseous and particulate states depicts that both PM10 and PM2.5 particles were significantly correlated with NOx, and their correlations with NOx are more significant than those with other pollutants. Through PCA, it is found that there was a distinctive difference in the principal component combination structure of winter/summer PM10 and PM2.5 particles: SO2 and NOx dominated in the principal component of winter PM10 and PM2.5 particles; while CO and NOx played the major role in the principal component of summer PM10 and PM2.5 particles. For winter/summer PM10 and PM2.5 particles, there might exist the gaseous and particulate states correlation structures of different "combinations" of such dependent pollutant species. Research results also uncover that the interaction processes of gaseous and particulate states were also related with the vertical structure of UBL, that is to say, the low value layer of UBL O3 concentration was associated with the collocation of atmospheric vertical structures of the low level inversion,inverse humidity, and small wind, which depicts summer boundary layer atmospheric character, i.e.the compound impact of the dependent factor "combination" of wind, temperature, and humidity elements and their collocation structure on the variations of different gaseous pollutant concentrations. Such a depth structure of the extremely low value of O3 concentration in the UBL accords with its "inverse-phase" relation with other gaseous pollutant species. The PCA of meteorological factors associated with PM10 and PM2.5 concentrations also reveals the sensitivity of PM10 and PM2.5 concentration to the combinatory feature of local meteorological conditions.  相似文献   
109.
On the basis of Biot dynamic theory, an analytic solution of two-dimensional scattering and diffraction of plane SV waves by circular cylindrical canyons in a half space of saturated porous media is presented in this paper for the first time. The solution is obtained by employing the Fourier–Bessel series expansion technique. Parametric studies had been carried out, which includes: the angle of incidence, the frequency of the incident SV wave, the porosity of saturated porous medium and the stiffness and Poisson's ratio of the solid-skeleton. All the outcomes are useful for the seismic analysis of the surface topography conditions.  相似文献   
110.
All methods of seismic characterization of fractured reservoirs are based on effective media theories that relate geometrical and material properties of fractures and surrounding rock to the effective stiffnesses. In exploration seismology, the first-order theory of Hudson is the most popular. It describes the effective model caused by the presence of a single set of thin, aligned vertical fractures in otherwise isotropic rock. This model is known to be transversely isotropic with a horizontal symmetry axis (HTI). Following the theory, one can invert the effective anisotropy for the crack density and type of fluid infill of fractures, the quantities of great importance for reservoir appraisal and management.Here I compute effective media numerically using the finite element method. I deliberately construct models that contain a single set of vertical, ellipsoidal, non-intersecting and non-interconnected fractures to check validity of the first-order Hudson’s theory and establish the limits of its applicability. Contrary to conventional wisdom that Hudson’s results are accurate up to crack density e ≈ 0.1, I show that they consistently overestimate the magnitudes of all effective anisotropic coefficients ε(V), δ(V), and γ(V). Accuracy of theoretically derived anisotropy depends on the type of fluid infill and typically deteriorates as e grows. While the theory gives | ε(V)|, |δ(V)|, |γ(V)| and close to the upper bound of the corresponding numerically obtained values for randomly distributed liquid-filled fractures, theoretical predictions of ε(V), δ(V) are not supported by numerical computations when the cracks are dry. This happens primarily because the first-order Hudson’s theory makes no attempt to account for fracture interaction which contributes to the final result much stronger for gas- than for liquid-filled cracks. I find that Mori-Tanaka’s theory is superior to Hudson’s for all examined crack densities and both types of fluid infill.The paper was presented at the 11th International Workshop on Seismic Anisotropy (11IWSA) held in St. John’s, Canada in 2004.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号